x(x-2)+x^2-2x+6=3x^2

Simple and best practice solution for x(x-2)+x^2-2x+6=3x^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x(x-2)+x^2-2x+6=3x^2 equation:



x(x-2)+x^2-2x+6=3x^2
We move all terms to the left:
x(x-2)+x^2-2x+6-(3x^2)=0
determiningTheFunctionDomain x^2-3x^2+x(x-2)-2x+6=0
We add all the numbers together, and all the variables
-2x^2-2x+x(x-2)+6=0
We multiply parentheses
-2x^2+x^2-2x-2x+6=0
We add all the numbers together, and all the variables
-1x^2-4x+6=0
a = -1; b = -4; c = +6;
Δ = b2-4ac
Δ = -42-4·(-1)·6
Δ = 40
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{40}=\sqrt{4*10}=\sqrt{4}*\sqrt{10}=2\sqrt{10}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-2\sqrt{10}}{2*-1}=\frac{4-2\sqrt{10}}{-2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+2\sqrt{10}}{2*-1}=\frac{4+2\sqrt{10}}{-2} $

See similar equations:

| 7(4q+3)-9q=-7 | | 1/3y+10=1 | | -10(8-2x)=200 | | x/9-50=13 | | 70-4x=80-8x | | 3x+2=2(2x+3( | | X/2=x/5+7/2 | | 3x+2=2(2x+3 | | X=-7y^2 | | 5=c+7 | | 15t-35=9t-11 | | 3-5x=2x=4 | | 8/15(p)=10 | | 3c-4c=1=5c+2+3 | | 9/8w=5/8w+1/8w | | 0.7x+1.15=0.4x+2.5 | | 4x-50+3x-20=180° | | 3/4(2x+4)-x=19 | | 1/12y-4=-9 | | 17x-34=84-16 | | 2(5f+9)=10f+18 | | 48/15(p)=10 | | 5x+2=3(x+14) | | 3(2x+6)=7x+5 | | 0.05=0.7^x | | 5x+14-7x=17-17x+15x-3 | | 6h=54h | | 54=2x+5 | | X^2-9x-3=-6x+1 | | 3x^2+6x+152=0 | | 71=3x-15 | | 2(x-7=2x-14 |

Equations solver categories